40 research outputs found

    Passive Components for Ultra-Wide Band (UWB) Applications

    Get PDF
    UWB technology brings the convenience and mobility of wireless communications to very high-speed interconnects in the home and office due to the precision capabilities combined with the low power. This makes it ideal for certain radio frequency sensitive environments such as hospitals and healthcare as well as radars. UWB intrusion-detection radar is used for detecting through the wall and also used for security with fuse avoidance radar, precision locating and tracking (using distance measurements between radios), and precision time-of-arrival-based localization approaches. The FCC issued a ruling in 2002 that allowed intentional UWB emissions in the frequency range between 3.1 and 10.6 GHz, subject to certain restrictions for the emission power spectrum. Other definitions for ultra-wideband range of frequency are also used such as any device that has 500 MHz bandwidth or fractional bandwidth greater than 25% is considered an UWB enable high data rate to be transferred with a very low power that does not exceed −41.3 dBm

    Detection of Underground Water by Using GPR

    Get PDF

    Non-Invasive Electromagnetic Biological Microwave Testing

    Get PDF
    Blood glucose monitoring is a primary tool for the care of diabetic patients. At present, there is no noninvasive monitoring technique of blood glucose concentration that is widely accepted in the medical industry. New noninvasive measurement techniques are being investigated. This work focuses on the possibility of a monitor that noninvasively measures blood glucose levels using electromagnetic waves. The technique is based on relating a monitoring antenna’s resonant frequency to the permittivity, and conductivity of skin, which in turn, is related to the glucose levels. This becomes a hot researched field in recent years. Different types of antennas (wideband and narrowband) have been designed, constructed, and tested in free space. An analytical model for the antenna has been developed, which has been validated with simulations. Microstrip antenna is one of the most common planar antenna structures used. Extensive research development aimed at exploiting its advantages such as lightweight, low cost, conformal configurations, and compatibility with integrated circuits have been carried out. Rectangular and circular patches are the basic shapes that are the most commonly used in microstrip antennas. Ideally, the dielectric constant εr, however, and other performance requirements may dictate the use of substrate whose dielectric constant can be greater. As in our prototype blood sensor, the miniaturized size is one of the main challenges

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Ultrawideband Vivaldi Antenna for DVB-T, WLAN, and WiMAX Applications

    No full text
    Compact Vivaldi patch antenna with a parasitic meander line is presented in this paper. A PIN diode switch is used to connect and disconnect ultrahigh frequency band (UHF) with ultrawide bandwidth (UWB). The operating frequencies can be switched among different services, depending on the switching states (ON/OFF) to add the lower band when required. This antenna is suitable for portable DVB-T which extended from 450 MHz to 850 MHz receiver applications and the WLAN (Wireless Local Area Network) IEEE 802.11b,g (5.1–5.8) GHz frequency bands and WiMAX band (3.3–3.8) GHz. The measured reflection coefficient of the proposed antenna is compared with the simulated one; good agreement is observed. Also, simulated radiation pattern of the antenna is presented. All simulations are carried out using the EM commercial simulator, high frequency structure simulator (HFSS) ver.13

    Method of moments analysis for antenna arrays with optimum memory and time consumption

    No full text
    For some applications, single element antennas are unable to meet the gain or radiation pattern requirements.Combining several antenna elements in an array is a possible solution.In order to get accurate analysis of the antenna arrays, full wave analysis techniques such as the method of moments (MoM), the finite difference time domain (FDTD), etc are required.Unfortunately, these methods are heavy computational methods that consume long time and large computational resources.Even with the appearance of the high performance parallel processing resources, the computational time and memory usage still large due to the nature of the problem.So, in this paper, the MoM is chosen to analyze large problems such as antenna arrays taking into consideration the reduction of its needed computational resources and time consuming.The MoM is a well-established and an accurate full wave analysis method.The MoM is applied to solve the electric field integral equation (EFIE) on conducting objects with the use of RWG basis function that is used with triangular segmentation of the scatterer surface.The proposed procedure is to decompose the computational domain into subdomains taking interaction between domains iteratevly until steady state is noticed.The proposed procedure minimizes the time and memory consumption greatly
    corecore